孟德尔随机化笔记(四)——药物靶点MR分析
用于药物开发与效应预测的药物孟德尔随机化(Drug-MR),基于靶蛋白的下游产物(biomarker),以靶蛋白编码基因附近的对biomarker有显著效应的SNP(pQTL或者eQTL)作为工具变量,以biomarker浓度作为暴露,以疾病作为结局,进行孟德尔随机化,以验证蛋白靶对于所研究疾病的影响。
资料建议剔除连锁不平衡: R^2 = 0.60
下面是分别用easyMR和MendelR包进行的分析代码
library(easyMR)
dat=get_drug_target_data(
id = "ieu-b-110", #暴露GWAS ID
gene_name="HMGCR", #药靶蛋白编码基因
kb=100, #基因附近的SNP范围
clump_kb = 100, #clump的范围
clump_local = FALSE,
r2=0.3, #clump的r2阈值
pval=0.05,
MAF = 0.01, #次等位基因频率 阈值
build = "GRch38",
chr = NULL,
pos_start = NULL,
pos_end = NULL
)
drug_MR(
target_gene_data=dat,
outcome_id ="finn-b-I9_AF", #疾病GWAS ID
outcome_name="atrial fibrillation",
inhibitor = FALSE,
after_trans_inhibitor = FALSE,
pval = 0.05,
action = 2,
out_type = "binary",
save_path="e:"
)
library(MendelR)
mr_common(
id_exposure = "ieu-b-110", #暴露GWAS ID
id_outcome = "finn-b-I9_AF", #疾病GWAS ID
p1 = 0.05,
p2 = 0.05,
write_csv = TRUE,
write_ppt = FALSE,
method_list = c("mr_ivw", "mr_egger_regression", "mr_weighted_median",
"mr_weighted_mode"),
rm_snps = NULL,
r2 = 0.3, #clump的r2阈值
kb = 100, #clump的范围
build_version = "hg19",
gene = "HMGCR", #药靶蛋白编码基因
chr = NULL,
pos_start = NULL,
pos_end = NULL,
eaf_threshold = NULL,
run_presso = T,
gene_win = 100, #基因附近的SNP范围
NbDistribution = 3000,
find_proxy = T,
local_clump = F,
r2_cal_mode = 1,
steiger = T, #是否进行Steiger方向性检验
auto_ivw = T,
pop = "EUR",
no_clump = F,
out_dir = NULL,
exposure_samplesize = NULL,
outcome_samplesize = NULL
)